↑ Return to Functional Morphology

Share Button
Header of the workshop Introduction to Functional Morphology and Biomechanics - 4th Edition


Workshop coordinator



Date and Site


Workshop length & ECTS


Number of places








Registration Form


Workshop Poster


Introduction to Functional Morphology and Biomechanics
This workshop aims to give the participants the ability to use the interdisciplinary approach of biomechanics, especially (but not only) through examples in palaeontology. Simple models based on the basic principles of classical physics will be used to infer the life history of extinct vertebrates.


Dr. Jordi Marcé-Nogué instructor at Transmitting Science
Dr. Jordi Marcé-Nogué
(Universität Hamburg, Germany).
Dr. Richard Fariña instructor at Transmitting Science
Dr. Richard Fariña
(Universidad de La República, Uruguay).
Dr. Soledad De Esteban-Trivigno instructor at Transmitting Science
Dr. Soledad De Esteban-Trivigno
(Transmitting Science and Institut Català de Paleontologia Miquel Crusafont (ICP), Spain).
Dr. Pere Ibáñez-Gimeno instructor at Transmitting Science
Dr. Pere Ibáñez-Gimeno
(PAVE Research Group, Department of Archaeology and Anthropology, University of Cambridge, United Kingdom).

Workshop coordinator:

Dr. Soledad De Esteban-Trivigno workshop coordinator at Transmitting Science
Dr. Soledad De Esteban-Trivigno

(Transmitting Science, Spain).


Graduate or postgraduate degree in any Sciences discipline, basic knowledge of statistics and personal computers. All participants must bring their own personal laptop (Windows, Macintosh, Linux).



Date and Site:

Institut Català de Paleontologia Miquel Crusafont (ICP): Premises of Sabadell - Museum

Monday 11th to Friday 15th January 2016.

Premises of Sabadell of the Institut Català de Paleontologia Miquel Crusafont (ICP), C/ de l’Escola Industrial, 23, 08201 Sabadell, Barcelona (Spain). GPS Coordinates: Latitude 41.547346 (41° 32’ 50.4459’’N), Longitude 2.106325 (2° 6’ 22.7712’’E). How to arrive.


Monday 11th January 2016: Dr. Jordi Marcé-Nogué.

1. Statics: Vector notation, force, moment, work, energy, Newton laws, levers, free body diagram and equilibrium. Exercises.

2. Beam Theory: Equilibrium in the cross-section of a beam, laws and diagrams. Exercises.


Tuesday 12th January 2016: Dr. Jordi Marcé-Nogué.

3. Elasticity in Beams: Axial forces, Bending, Shear and Torsion.


Wednesday 13th January 2016: Dr. Richard Fariña.

4. Basic principles.

- Mass (concept and units), force (units, special case: Weight), pressure (concept, units), energy (units, forms of energy: Potential, kinetic, elastic), power (units, example: Metabolic rate).

- Conditions of equilibrium: Forces and moments. Mechanical advantage. Biological examples.

- Practical session: Measurements in ulnas to assess the extention of the forearm in mammals.

- Biological materials, function and properties: Stress, strain, elastic modulus. Factor of safety, examples in biology.

5. Mastication in vertebrates.

- Transition from reptiles to mammals, the problem of the resultant in the craniomandibular joint region.

- Terrestrial locomotion and athleticism in tetrapods.

- Beam theory applied to the long bones of the extremities in parasagittal terrestrial vertebrates.

- Second moment of area, section modulus, strength indicator.

- Examples in reconstructing habits in extinct vertebrates.


Thursday 14th January 2016: Dr. Richard Fariña and Dr. Soledad De Esteban-Trivigno.

6. Scale and allometry.

- Dynamic similarity.

- Froude number, origin of the concept and application to terrestrial locomotion.

- Geometric similarity, isometry and allometry.

- The importance of body size. Metabolic rate, athleticism and skin features.

- Scale and allometry. Geometric and elastic similarities.

- Body mass estimation: 3D reconstruction, regression, principal components analysis, centroid size (Geometric Morphometrics). Percent of prediction error. Mean and medium values.

- Practical session: Comparison of body mass estimations with different methods.

Friday 15th January 2016: Dr. Pere Ibáñez-Gimeno.

7. Entheseal changes.

- Definition, types, morphological variation and etiology. Entheseal changes and their dependence on activity. Terminology.

- Entheseal development: Description vs. quantification. Scoring systems: Criteria to grade the entheseal changes using different methods. Intraobserver and interobserver tests.

- Practical session: Grading entheseal changes in human bones and comparison with other animals. Statistical treatment of the data.

- Statistical analyses to deduce activity patterns: Aggregation and functional groups. Comparisons between populations, sexual dimorphism and bilateral asymmetry. Multifactorial analyses.

- Examples of studies inferring activity patterns from entheseal changes. Further applications: Activity-dependence of morphological characteristics. New approaches: 3D laser scanning and fractal analysis.

8. Cross-sectional properties.

- Previous considerations: Wolff’s Law and bone functional adaptation. Types of mechanical loadings. Rigidity and strength. Definition and biomechanical meaning of cross-sectional properties: Cross-sectional areas, second moments of area, section moduli and shape variables.

- Obtaining images of diaphyseal sections: Sections of interest and orientation of bones. Methods to obtain the images: Broken or cut sections, CT scanning, latex cast method and ellipse model method. Relevance of the outer and the inner contours. Scale.

- Practical session: Obtaining the outer contour from 3D images. Reconstruction of the inner contour from biplanar radiographs. Calculation of cross-sectional properties. Statistical treatment of the data.

- Size standardization for cross-sectional properties.

- Statistical analyses to deduce activity patterns. Comparisons between populations, sexual dimorphism and bilateral asymmetry.

- Relationship between entheseal changes and cross-sectional properties.


  • General Biomechanics:

- Fariña FA (1995) Limb bone strength and habits in large glyptodonts. Lethaia, 28: 189-196.

- Fariña RA, Blanco RE (1996) Megatherium, the stabber. Proceedings of the Royal Society B, 263: 1725-1729.

- Fariña RA, Vizcaíno SF, Blanco RE (1997) Scaling of the Indicator of Athletic Capability in fossil and extant land tetrapods. Journal of Theoretical Biology, 185: 441-446.

- Alexander RM, Fariña RA, Vizcaíno SF (1999) Tail blow energy and carapace fractures in a large glyptodont (Mammalia, Xenarthra). Zoological Journal of the Linnean Society, 126: 41-49.

- Vizcaíno SF, Fariña RA, Mazzetta GV (1999) Ulnar dimensions and fossoriality in armadillos. Acta Theriologica, 44: 309.

- Alexander RM (2003) Modelling approaches in biomechanics. Phil Trans R Soc Lond B, 358: 1429-1435.

- Alexander RM, Animal mechanics, Blackwell Scientific Publications.


  • Scale, Allometry and Body Mass Estimation:

- De Esteban-Trivigno S, Mendoza M, De Renzi M (2008) Body mass estimation in Xenarthra: Predictive equations suitable for all quadrupedal terrestrial placentals? Journal of Morphology, 269: 1276-1293.

- Henderson DH (2010) Estimating the masses and centers of mass of extinct animals by 3D mathematical slicing. Paleobiolgy, 25 (1): 88-106.

- De Esteban-Trivigno S, Köhler M (2011) New equations for body mass estimation in bovids: Testing some procedures when constructing regression functions. Mammalian Biology, 76 (6): 755-761.


  • Entheseal Changes and Cross-Sectional Properties:

- Hawkey DE, Merbs CF (1995) Activity-induced musculoskeletal stress markers (MSM) and subsistence strategy changes among ancient Hudson Bay eskimos. International Journal of Osteoarchaeology, 5: 324-338.

- Ruff CB (2000) Biomechanical analyses of archaeological human skeletons. Biological Anthropology of the Human Skeleton, Pages 71-102 in Katzenberg MA, Saunders SR, eds. Wiley-Liss. New York.

- O’Neill MC, Ruff CB (2004) Estimating human long bone cross-sectional geometric properties: A comparison of noninvasive methods. Journal of Human Evolution, 47: 221-235.

- Galtés I, Rodríguez-Baeza A, Malgosa A (2006) Mechanical morphogenesis: A concept applied to the surface of the radius. The Anatomical Record, 288: 794-805.

- Ruff CB, Holt B, Trinkaus E (2006) Who’s afraid of the big bad wolff? “Wolff’s law” and bone functional adaptation. American Journal of Physical Anthropology, 129: 484-498.

- Shaw CN, Stock JT (2009) Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. American Journal of Physical Anthropology, 140: 160-172.

- Villotte S, Castex D, Couallier V, Dutour O, Knüsel CJ, Henry-Gambier D (2010) Enthesopathies as occupational stress markers: Evidence from the upper limb. American Journal of Physical Anthropology, 142: 224-234.

- Davies TG, Shaw CN, Stock JT (2012) A test of a new method and software for the rapid estimation of cross-sectional geometric properties of long bone diaphyses from 3D laser surface scans. Archaeological and Anthropological Sciences, 4: 277-290.

- Ibáñez-Gimeno P, Galtés I, Jordana X, Fiorin E, Manyosa J, Malgosa A (2012) Entheseal changes and functional implications of the humeral medial epicondyle. International Journal of Osteoarchaeology, 23: 211-220.

- Ibáñez-Gimeno P, De Esteban-Trivigno S, Jordana X, Manyosa J, Malgosa A, Galtés I (2013) Functional plasticity of the human humerus: Shape, rigidity and muscular entheses. American Journal of Physical Anthropology, 150: 609-617.

Workshop length and ECTS:

40 hours on-site. This workshop is equivalent to 4 ECTS (European Credit Transfer System). Participants who have completed the workshop will receive a certificate at the end of it.


Monday 11th to Friday 15th January 2016:

9:30 to 13:30 Lessons.
13:30 to 15:00 Lunch.
15:00 to 19:00 Lessons.

  • There will be two coffee breaks each day, halfway through each lesson session.

The schedule is approximate; it is possible that the content of one day may run into the next and a working day may be longer than advertised.

Number of places:

Places are limited to 20 participants and will be occupied by strict registration order.


Reduced registration fee until July 31, 2015: 420 €. Full registration fee after July 31, 2015: 590 €. Reduced registration fee extended to November 30, 2015. This includes workshop material, coffee breaks and lunches.

Former participants will have a 5 % discount** on the current workshop fee.

We offer the possibility of paying in two instalments (contact us at courses@transmittingscience.org).

Please complete and submit your Registration Form (see below); we will confirm your acceptance by e-mail. If you do not receive any confirmation by e-mail after registration, please contact us at courses@transmittingscience.org.

Cancellation policy:

If you wish to cancel your participation in this workshop, cancellations up to 20 days before the workshop start date will incur a 30 % cancellation fee. For later cancellations, or non-attendance, 75 % of the fee will be charged.

If Transmitting Science must cancel this workshop due to unforeseen circumstances beyond the control of Transmitting Science, you will either be entitled to a full refund of the workshop fee, or your fee can be credited toward a future course / workshop. Transmitting Science is not responsible for travel fees, or any expenses incurred by you as a result of such cancellation. Every effort will be made to avoid the cancellation of any planned course / workshop.


The workshop will take place in the city of Sabadell, Barcelona (Spain).

You may stay in Barcelona city or Sabadell. You will find information about Hotels and Hostel in Sabadell here. It takes about 45 minutes by public transport to arrive to Sabadell from the centre of Barcelona city. The place of the workshop is about 15 minutes walking from the train stop.

How to arrive to Sabadell from Barcelona city.


Unfortunately there are no internal grants available for this workshop. However some discounts are offered to people belonging to some of the Associations, Institutions or Universities listed here. If you want to apply to this discount please state the name of your Association, Institution or University in the “Comments” field of the Registration Form (proof will be asked later).

Spanish unemployed scientists, as well as Spanish PhD students without any grant to develop their PhD, could benefit from a 40 % discount** on the workshop fee. If you want to ask for this discount, please contact us at courses@transmittingscience.org. That would apply for a maximum of 2 places and they will be covered by strict inscription order.


For further information contact: courses@transmittingscience.org.


Transmitting Science Logo Institut Català de Paleontologia Miquel Crusafont (ICP) Logo


Colegio Oficial de Biólogos de Castilla y León Logo Colegio Oficial de Biólogos de Euskadi Logo Colexio Oficial de Biólogos de Galicia Logo
Col·legi Oficial de Biòlegs de la Comunitat Valenciana Logo European Association of Vertebrate Palaeontologists (EAVP) Logo


Rhinoceros Logo

Registration Form

  • Do you need an invitation letter for processing a visa?
    (list of countries in which visa is required to visit Spain).
  • Are you going to validate the workshop in any research PhD School or doctorate?
  • At which University / Postgraduate School / PhD School?


** Discounts are not cumulative.